Online Learning for Ground Trajectory Prediction

نویسندگان

  • Areski Hadjaz
  • Gaétan Marceau-Caron
  • Pierre Savéant
  • Marc Schoenauer
چکیده

This paper presents a model based on an hybrid system to numerically simulate the climbing phase of an aircraft. This model is then used within a trajectory prediction tool. Finally, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization algorithm is used to tune five selected parameters, and thus improve the accuracy of the model. Incorporated within a trajectory prediction tool, this model can be used to derive the order of magnitude of the prediction error over time, and thus the domain of validity of the trajectory prediction. A first validation experiment of the proposed model is based on the errors along time for a one-time trajectory prediction at the take off of the flight with respect to the default values of the theoretical BADA model. This experiment, assuming complete information, also shows the limit of the model. A second experiment part presents an on-line trajectory prediction, in which the prediction is continuously updated based on the current aircraft position. This approach raises several issues, for which improvements of the basic model are proposed, and the resulting trajectory prediction tool shows statistically significantly more accurate results than those of the default model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights

Ground-based aircraft trajectory prediction is a major concern in air traffic control and management. A safe and efficient prediction is a prerequisite to the implementation of automated tools that detect and solve conflicts between trajectories. This paper focuses on the climb phase, because predictions are much less accurate in this phase than in the cruising phase. Trajectory prediction usua...

متن کامل

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

An Adaptive Machine Learning Algorithm for Location Prediction

Context-awareness is viewed as one of the most important aspects in the emerging pervasive computing paradigm. Mobile context-aware applications are required to sense and react to changing environment conditions. Such applications, usually, need to recognize, classify and predict context in order to act efficiently, beforehand, for the benefit of the user. In this paper, we propose a novel adap...

متن کامل

Drilling Trajectory Prediction Model for Push-the-bit Rotary Steerable Bottom Hole Assembly

The study of rotary steering drilling technology is currently one of the hot topics in the drilling engineering field. It requires accurate well trajectory control instructions when rotary steerable tools are applied to achieve the well trajectory control goal. A drilling trajectory prediction model will benefit this progress. According to the continuous beam theory, a mechanical model of push-...

متن کامل

Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines

In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1212.3998  شماره 

صفحات  -

تاریخ انتشار 2012